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We derive exact and asymptotic results for the number of star and watermelon
configurations of vicious walkers confined to lie between two impenetrable
walls, as well as corresponding results for the analogous problem of .-friendly
walkers. Our proofs make use of results from symmetric function theory and the
theory of basic hypergeometric series.
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1. INTRODUCTION

This is the third paper in a series studying vicious and friendly walkers. In
the first paper (1) it was shown how certain results from the theory of Young
tableaux, and related results in algebraic combinatorics enabled one to
readily prove closed form expressions for the number of star and water-
melon configurations of vicious walkers on a d-dimensional lattice.

In the second paper, (2) we showed how some results from the theory of
symmetric functions could be used to prove analogous results for the more
difficult problem of walkers in the presence of an impenetrable wall. We
also gave rigorous asymptotic results.

In that paper we also developed the theory of n-friendly walkers,
introduced in ref. 3 and 4. The two models differ slightly. In ref. 3, the
‘‘vicious’’ constraint is systematically relaxed, so that any two walks (but



not more than two) may stay together for up to n lattice sites in a row, but
may never swap sides. We refer to this as the n-friendly walker model. In
the limit as n Q . we obtain the .-friendly walker model in which two
walkers may share an arbitrary number of steps. The Tsuchiya–Katori
model, (4) by contrast, corresponds to a variant of the .-friendly walker
model which allows any number of walkers to share any number of lattice
sites, whereas in the Guttmann–Vöge definition, (3) only two walkers may
share a lattice site. We subsequently refer to these two models as the TK
and GV models respectively. Thus the number of TK friendly walk con-
figurations gives an upper bound on the number of .-friendly walk con-
figurations in the definition of GV. We make use of this observation in
subsequent proofs.

In this, the final paper in the series, we address the problem of vicious
and friendly walkers confined to a finite strip—or, equivalently, confined to
lie between two parallel walls. A star configuration in a strip of width 11 is
shown in Fig. 1.

Vicious walkers describes the situation in which two or more walkers
arriving at the same lattice site annihilate one another. Accordingly, the
only configurations we consider in that case are those in which such con-
tacts are forbidden. Alternatively expressed, we consider mutually self-
avoiding networks of lattice walks which also model directed polymer
networks. The connection of these vicious walker problems to the 5 and
6 vertex model of statistical mechanics was also discussed in ref. 1.

Fig. 1. A star of p=4 vicious walkers, of length m=6, confined to a strip of width h=11.
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The problem, together with a number of physical applications, was
first introduced by Fisher. (5) Physical applications include models of
wetting, and Fisher’s original articles already raised the physical interesting
consequences of the introduction of geometrical constraints in the form of
walls. Very recently, it was shown in ref. 6 that the problem of vicious
walkers in a (periodic) strip involves precisely the same combinatorics as
arises in three-dimensional Lorentzian quantum gravity. The general model
is one of p random walkers on a d-dimensional lattice who at regular time
intervals simultaneously take one step with equal probability in the direc-
tion of one of the allowed lattice vectors such that at no time do two
walkers occupy the same lattice site.

Very recently, a number of authors (7–10) have made fascinating con-
nections between certain properties of two-dimensional vicious walkers
and the eigenvalue distribution of certain random matrix ensembles. In
ref. 7 a model is introduced which can be considered as a randomly
growing Young diagram, or a totally asymmetric one-dimensional exclu-
sion process. (This could be interpreted in the vicious walker model where
at each time unit exactly one of the walkers moves. This model occurs
already in ref. 5.) It is shown that the appropriately scaled shape fluctua-
tions converge in distribution to the Tracy–Widom distribution (11) of the
largest eigenvalue of the Gaussian Unitary Ensemble (GUE). Similarly, in
ref. 10 a vicious walker model is considered in which the end-point fluc-
tuations of the top-most walker (in our notation) are considered. In that
case the appropriately scaled limiting distribution is that of the largest
eigenvalue of another distribution, the Gaussian Orthogonal Ensemble
(GOE). (12) Finally in refs. 8 and 9 the height distribution of a given point in
the substrate of a one-dimensional growth process is considered, and this
is generalised to models in the Kardar–Parisi–Zhang (KPZ) universality
class. (13) The configurations considered again appear like vicious walkers.
Again fluctuations and other properties of the models are found that
follow GOE or GUE distributions.

The two standard topologies of interest are that of a star and a
watermelon. Consider a directed square lattice, rotated 45° and augmented
by a factor of `2, so that the ‘‘unit’’ vectors on the lattice are (1, 1) and
(1, −1). Both configurations consist of p branches of length m (the lattice
paths along which the walkers proceed) which start at (0, 0), (0, 2),
(0, 4),..., (0, 2p − 2). The watermelon configurations end at (m, k), (m, 2+k),
(m, 4+k),..., (m, k+2p − 2), for some k. For stars, the end points of the
branches all have x-coordinate equal to m, but the y coordinates are
unconstrained, apart from the ordering imposed by the non-touching con-
dition. Thus if the end points are (m, e1), (m, e2), (m, e3),..., (m, ep), then
e1 < e2 < e3 < · · · < ep [ 2p − 2+m. In the problem considered here, the
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additional constraint of impenetrable walls imposes the conditions that at
no stage may any walker step to a point with negative y-coordinate, or to a
point with y-cordinate greater than the strip width, h. We can also consider
displaced configurations, in which the starting points are (0, a), (0, a+2),
(0, a+4),..., (0, a+2p − 2).

Vicious walkers confined to lie between two walls can be alternatively
viewed as random walks in an alcove of an affine Weyl group of type C if
the set of allowed steps is appropriately chosen. In this form they are con-
sidered by Grabiner in ref. 14, Sec. 5. The topic of the paper (14) is the exact
enumeration of random walks in alcoves of affine Weyl groups of types
A, C, and D. One of the problems posed in ref. 14 is to find asymptotic
formulae for these random walks (when the length of the walks goes to
infinity). We solve this problem for the random walks in an alcove of type
C that correspond to our vicious walkers between two walls. Asymptotic
results for the other enumeration problems considered in ref. 14 will appear
in the forthcoming paper. (15) An earlier, related paper (16) contains partial
results for vicious walkers on a cylinder in the case of an odd number of
walkers (which are equivalent to random walkers in an alcove of type A).

It is intuitively clear that the asymptotic growth of the number of
vicious walkers within a strip must be exponential, with the base of the
exponential depending on both the width of the strip and the number of
walkers, but not on the starting and end points of the walkers. This is con-
firmed by our results. (The same must of course be true for n-friendly
walkers, although we are only able to rigorously confirm this for
.-friendly walkers in the TK model, by deriving explicit formulae.) Thus,
for example, the asymptotics of stars and watermelons in the same strip
will be exponential with the same base, and will only differ in the constant
by which the exponential is multiplied. In the cases of walks with only one
wall, or no walls, (1, 2) the asymptotic growth factor is just 2p, where p is the
number of walkers.

Our results explicitly establish these intuitive results. Furthermore, in
proving these results we present a variety of mathematical techniques and
results which are likely to be of value in the study of related problems
in the mathematical physics literature, a number of which are discussed
above.

Our paper is organised as follows. In Section 2 we provide exact for-
mulas for the number of vicious walkers between two walls with arbitrary
starting and end points. With the exception of one, these appear already in
ref. 14, in equivalent forms. These results follow from the Lindström–
Gessel–Viennot theorem on nonintersecting lattice paths and known results
for lattice paths between two parallel lines. They express the number of
vicious walkers within a strip as determinants. In Section 3 we address the
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asymptotics of these formulas when the length of the branches of the
vicious walkers goes to infinity. In Theorem 4 we give the asymptotics for
vicious walkers within a strip for arbitrary (but fixed) starting and end
points. By specializing the starting and end points, we obtain asymptotic
results for watermelons within a strip, see Corollary 5. In order to obtain
asymptotic results for stars within a strip, the formula in Theorem 4 has to
be summed over all possible end points. To carry out this summation is a
highly nontrivial task. It requires some symmetric function theory, in par-
ticular certain relations between Schur functions and symplectic and
orthogonal characters, and a summation theorem for a basic hypergeome-
tric series. The final result is given in Theorem 6. This theorem is then spe-
cialized to obtain the asymptotics for stars within a strip, see Corollaries 7
and 8.

2. THE NUMBER OF VICIOUS WALKER CONFIGURATIONS WITH

ARBITRARY FIXED STARTING AND END POINTS

The Lindström–Gessel–Viennot determinant (17, 18) in the case of the
presence of two walls yields the following result. It appears already in
ref. 14, Eq. (13), in an equivalent form.

Theorem 1. Let 0 [ a1 < a2 < · · · < ap [ h, all ai’s of the same
parity, and 0 [ e1 < e2 < · · · < ep [ h, all ei’s of the same parity, such that
ai+ei — m (mod 2), i=1, 2,..., p. The number of vicious walkers with p
branches of length m, the ith branch running from Ai=(0, ai) to
Ei=(m, ei), i=1, 2,..., p, which do not go below the x-axis nor above the
line y=h, is given by

det
1 [ s, t [ p

1 C
.

k=−.

11 m
m+et − as

2 +k(h+2)
2−1 m

m+et+as
2 +k(h+2)+1

222 . (2.1)

Proof. According to the main theorem of non-intersecting lattice
paths, ref. 18, Cor. 2 (see ref. 19, Thm. 1.2), the number of vicious walkers
in question equals

det
1 [ s, t [ p

(|P++(At Q Es)|), (2.2)

where P++(A Q E) denotes the set of all lattice paths from A to E which
do not go below the x-axis nor above the line y=h. There is a well-known
formula (see ref. 20, Eq. (1.7)) for the latter number, which is obtained by
an iterated reflection principle. Substitution of this formula into (2.2)
immediately gives (2.1). L
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By bringing the sums in (2.1) outside the determinant (using the multi-
linearity of the determinant), the number of these vicious walkers can be
described as a multiple sum of determinants. In some cases, such as for
certain watermelons and stars, the determinants can be evaluated. In those
cases, a multiple hypergeometric sum is obtained.

Theorem 2. Let 0 [ e1 < e2 < · · · < ep [ h with ei — m (mod 2),
i=1, 2,..., p. The number of vicious walkers with p branches of length m,
the ith branch running from Ai=(0, 2i − 2) to Ei=(m, ei), which do not
go below the x-axis nor above the line y=h, i=1, 2,..., p, is given by

C
.

k1,..., kp=−.

2p − p2
D

p

s=1

(es+2ks(h+2)+1) (m+2s − 2)!
(m+es

2 +ks(h+2)+p)! (m − es
2 − ks(h+2)+p − 1)!

× D
1 [ s < t [ p

(et − es+2(h+2)(kt − ks))(et+es+2(h+2)(kt+ks)+2).

(2.3)

Proof. As described above the statement of the theorem, we first
write the expression (2.1), with ai=2i − 2, as a sum of determinants,

C
.

k1,..., kp=−.

det
1 [ s, t [ p

11 m
m+et

2 +kt(h+2) − s+1
2−1 m

m+et
2 +kt(h+2)+s

22 . (2.4)

Suppose that, initially, we disregard the terms kt(h+2) in the determinant,
then it simplifies to

det
1 [ s, t [ p

11 m
m+et

2 − s+1
2−1 m

m+et
2 +s

22 . (2.5)

Gessel–Viennot theory (again) says that this determinant counts vicious
walkers with p branches of length m, the ith branch running from
Ai=(0, 2i − 2) to Ei=(m, ei), which do not go below the x-axis. By
Theorem 6 of ref. 2, the number of these vicious walkers is given by

2−p2+p D
p

s=1

(es+1) (m+2s − 2)!
(m+es

2 +p)! (m − es
2 +p − 1)!

D
1 [ s < t [ p

(et − es)(es+et+2). (2.6)

Hence, the determinant in (2.5) must equal the expression (2.6). In fact, as
the equality between (2.5) and (2.6) can be reduced to an equation which is
polynomial in e1, e2..., ep, the equality is true for any choice of e1, e2,..., ep.
In particular, it remains true if we replace ei by ei+2ki(h+2), i=1, 2,..., p.
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However, the determinant in (2.5) under these replacements becomes the
determinant in (2.4). Thus, if we substitute the expression (2.6), with these
replacements, into (2.4), we immediately obtain (2.3). L

For the subsequent asymptotic calculations, however, we need a dif-
ferent type of expression for the number of vicious walkers under consid-
eration. This expression can be easily derived by a combination of the
Lindström–Gessel–Viennot theorem and an alternative expression for the
number of lattice paths between two parallel boundaries in terms of sines
and cosines. It appears already in ref. 14, Eq. (18), in an equivalent form.

Theorem 3. Let 0 [ a1 < a2 < · · · < ap [ h, all ai’s of the same
parity, and 0 [ e1 < e2 < · · · < ep [ h, all ei’s of the same parity, such that
ai+ei — m (mod 2), i=1, 2,..., p. The number of vicious walkers with
p branches of length m, the ith branch running from Ai=(0, ai) to
Ei=(m, ei), i=1, 2,..., p, which do not go below the x-axis and not above
the line y=h, is given by

2p

(h+2)p C
h+1

k1,..., kp=1

12p D
p

s=1
cos

ksp

h+2
2m

D
p

t=1
sin

pkt(et+1)
h+2

× det
1 [ s, t [ p

1 sin
pkt(as+1)

h+2
2 . (2.7)

Proof. We already know that, by the Lindström–Gessel–Viennot
theorem, the number in question is given by (2.2). Instead of using the
iterated reflection formula for |P++(A Q E)|, we now apply the (equally
well-known) alternative formula (see ref. 21, § 184, Ex. 1, Eq. (9))

|P++(A Q E)|=
2

h+2
C
h+1

k=1

12 cos
pk

h+2
2m

sin
pk(a+1)

h+2
· sin

pk(e+1)
h+2

,

given that A=(0, a) and E=(m, e). Substituting this into (2.2), and
bringing the summations and a few factors outside of the determinant
utilising the multi-linearity of the determinant, we get (2.7). L

3. THE ASYMPTOTICS OF VICIOUS WALKERS BETWEEN TWO

WALLS

We shall now use the exact formulae from the previous section to
derive asymptotic formulae for vicious walkers between two walls. In the
first subsection, we address the case where the end points of the vicious
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walkers are kept fixed. By summing over all possible end points, we shall
then obtain asymptotic formulae for stars in the second subsection.

3.1. Vicious Walkers with Fixed End Points

Theorem 3 enables us to derive asymptotic formulae for the number of
vicious walkers between two walls, for arbitrary starting and end points.

Theorem 4. Let 0 [ a1 < a2 < · · · < ap [ h, all ai’s of the same
parity, and 0 [ e1 < e2 < · · · < ep [ h, all ei’s of the same parity, such that
ai+ei — m (mod 2), i=1, 2,..., p. The number of vicious walkers with
p branches of length m, the ith branch running from Ai=(0, ai) to
Ei=(m, ei), i=1, 2,..., p, which do not go below the x-axis nor above the
line y=h, is asymptotically

4p2

(h+2)p
12p D

p

s=1
cos

sp

h+2
2m

D
1 [ s < t [ p

sin
p(at − as)
2(h+2)

· sin
p(et − es)
2(h+2)

× D
1 [ s [ t [ p

sin
p(at+as+2)

2(h+2)
· sin

p(et+es+2)
2(h+2)

. (3.1)

Remark. What this theorem says is that vicious walkers in a strip of
width h grow exponentially like (2p <p

s=1 cos sp
h+2)

m, everything else is just
the multiplicative constant. In particular, specialising either to watermelons
or stars leads to the same dominant asymptotic behaviour, with only a
multiplicative constant changing as the configurations change.

Proof. Theorem 3 tells us that the number of vicious walkers that
we wish to estimate can be written in the form of a finite sum ;a cab

m
a ,

where the ca’s and ba’s are independent of m. Hence, what we have to find
is b=maxa |ba |. Then, asymptotically, the number of vicious walkers is
bm ;a: |ba |=b ca if m is even, with a similar statement in the case that m is
odd.

The ba’s have the form

2p D
p

s=1
cos(ksp/(h+2)). (3.2)

To find the largest among these, we have to choose ks close to the lower
limit of the summation in (2.7), which is 1, or close to the upper limit, h+1.
However, we are not allowed to make a choice such that ks=kt for some
s ] t, because in that case the determinant in (2.7) vanishes. For the same
reason a choice such that ks=h+2 − kt for some s and t is forbidden.

1076 Krattenthaler et al.



Therefore the expression (3.2) will be maximal if the set {k1, k2,..., kp} is
chosen from {1, 2,..., p, h+2 − p,..., h, h+1}, subject to the two restrictions
mentioned above. These conditions give exactly 2p different choices. As a
short calculation shows, the sum of the corresponding summands in (2.7)
equals

4p

(h+2)p
12p D

p

s=1
cos

sp

h+2
2m

det
1 [ s, t [ p

1 sin
pt(as+1)

h+2
2 det

1 [ s, t [ p

1 sin
pt(es+1)

h+2
2 ,

or, equivalently,

(−1)p

(h+2)p
12p D

p

s=1
cos

sp

h+2
2m

det
1 [ s, t [ p

(e
pit

h+2 (as+1) − e− pit
h+2 (as+1))

× det
1 [ s, t [ p

(e
pit

h+2 (es+1) − e− pit
h+2 (es+1)). (3.3)

Both determinants are easily evaluated by means of the determinant
identity

det
1 [ i, j [ N

(x j
i − x−j

i )=(x1x2 · · · xN)−N D
1 [ i < j [ N

(xi − xj)(1 − xixj) D
N

i=1
(x2

i − 1),

(3.4)

which may be readily proved by the standard argument that proves
Vandermonde-type determinant identities.

A little manipulation then leads to (3.1). L

If we now specialize ai to a+2i − 2 and ei to e+2i − 2 in Theorem 4,
we then obtain the asymptotics for watermelons between two walls.

Corollary 5. Let a and e be integers with 0 [ a, e [ h − 2p+2 and
a+e — m (mod 2). The number of watermelons with p branches of length m,
in which the lowest branch starts at height a and terminates at height e,
which do not go below the x-axis nor above the line y=h, is asymptoti-
cally

4p2

(h+2)p
12p D

p

s=1
cos

sp

h+2
2m

D
1 [ s < t [ p

sin2 p(t − s)
(h+2)

× D
1 [ s [ t [ p

sin
p(a+t+s − 1)

(h+2)
· sin

p(e+t+s − 1)
(h+2)

. (3.5)
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Let a and e be integers with 0 [ a, e [ h − 2p+2 and a+e — m
(mod 2). The number of .-friendly watermelons in the TK model with p
branches of length m, in which the lowest branch starts at height a and
terminates at height e, which do not go below the x-axis nor above the line
y=h, is asymptotically

4p2

(h+2p)p
12p D

p

s=1
cos

sp

h+2p
2m

D
1 [ s < t [ p

sin2 2p(t − s)
(h+2p)

× D
1 [ s [ t [ p

sin
p(a+2t+2s − 3)

(h+2p)
· sin

p(e+2t+2s − 3)
(h+2p)

. (3.6)

Proof. There is nothing to say about the first claim, which follows
immediately from the theorem. To establish the second claim, we shift the
ith branch of the .-friendly watermelon by 2(i − 1) units up, as in the
proof of Theorem 4 of ref. 2. We transform .-friendly watermelons into
families of lattice paths which do not touch one another by shifting the ith
path up by 2(i − 1) units. Thus we obtain a set of vicious walkers with p
branches of length m, the ith branch starting from Ai=(0, a+4i − 4) and
terminating at Ei=(m, e+4i − 4), i=1, 2,..., p, which do not go below the
x-axis and not above the line y=h+2p − 2 (!). Hence, Theorem 4 with
ai=a+4i − 4, ei=e+4i − 4, i=1, 2,..., p, and h replaced by h+2p − 2
immediately gives the desired asymptotics. L

Clearly, by performing the obvious summations of (3.5) over e,
respectively a, we could also obtain the asymptotics for watermelons of
arbitrary deviation. The resulting sums do not appear to simplify however.
Nevertheless, since the summations are over finite sets (depending only on
the width h of the strip and the number p of walkers), it is obvious that the
order of the asymptotic growth is again (2p <p

s=1 cos sp
h+2)

m for vicious
walkers and (2p <p

s=1 cos sp
h+2p)

m for .-friendly walkers in the TK model.
It should be noted, however, that in contrast to watermelons without

restriction and with the restriction of one wall, as considered in our pre-
vious papers, the situation considered here, that is in the presence of the
restriction of two walls, the asymptotics of (ordinary) watermelons and
.-friendly watermelons (compare the bases of the exponentials in the two
statements in Corollary 5) is of a different order of magnitude (except in
the case of single branch watermelons, of course). Hence, from these
considerations, it is impossible to conclude whether n-friendly watermelons
restricted by two walls will have the same order of magnitude as (ordinary)
watermelons, or not.
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3.2. Asymptotics for Stars

Let us turn now to the asymptotics for stars. We begin with a general
theorem, which solves the problem, posed in ref. 14, of computing the
asymptotics for the number of random walks in an alcove of an affine
Weyl group of type C if the allowed steps are of the form 1

2 ( ± 1,
± 1,..., ± 1).

Theorem 6. Let 0 [ a1 < a2 < · · · < ap [ h be integers, all of the
same parity. The number of vicious walkers with p branches of length m,
the ith branch starting from Ai=(0, ai), i=1, 2,..., p, which do not go
below the x-axis nor above the line y=h, is asymptotically

4p2

(h+2)p
12p D

p

s=1
cos

sp

h+2
2m

D
1 [ s < t [ p

sin
p(at − as)
2(h+2)

· sin
p(t − s)

h+2

× D
1 [ s [ t [ p

sin
p(at+as+2)

2(h+2)
· sin

p(t+s)
h+2

D
p

s=0
D

p

t=1

sin
p(t − s+N(h+2)/2M)

h+2

sin
p(t − s+p)

h+2

× D
p

s=1

sin
(s+N(h+2)/2M− p) p

h+2

sin
(2s+N(h+2)/2M− p) p

h+2

, (3.7)

if m+ai is even, and

4p2

(h+2)p
12p D

p

s=1
cos

sp
h+2

2m

D
1 [ s < t [ p

sin
p(at −as)
2(h+2)

· sin
p(t−s)

h+2

× D
1 [ s [ t [ p

sin
p(at+as+2)

2(h+2)
· sin

p(t+s)
h+2

D
p

s=0
D

p

t=1

sin
p(t−s+N(h+1)/2M)

h+2

sin
p(t−s+p)

h+2

,

(3.8)

if m+ai is odd.

Proof. It is obvious that, in view of Theorem 4, we have to compute
the sum of (3.1) over all possible choices of e1 < e2 < · · · < ep. Here we
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have to distinguish between two cases, depending on whether m+ai is even
or odd.

First let m+ai be odd. This implies that all the ei’s are odd as well,
so that we have to compute the sum of (3.1) over all possible choices
of 1 [ e1 < e2 < · · · < ep [ h, with ei=2e −

i − 1 for some integer e −

i, i=
1, 2,..., p. If we remember that expression (3.1) came from (3.3), we see that
this is

2p2

(h+2)p
12p D

p

s=1
cos

sp

h+2
2m

D
1 [ s < t [ p

sin
p(at − as)
2(h+2)

D
1 [ s [ t [ p

sin
p(at+as+2)

2(h+2)

× (−i)p C
1 [ eŒ1 < · · · < eŒp [ N(h+1)/2M

det
1 [ s, t [ p

(e
2pit
h+2 eŒs − e− 2pit

h+2 eŒs). (3.9)

In order to evaluate the sum in the last line, we rewrite it in terms of
symplectic characters spl(x ± 1

1 , x ± 1
2 ,..., x ± 1

p ), which are defined by (see
ref. 22, Eq. (24.18))

spl(x ± 1
1 , x ± 1

2 ,..., x ± 1
p )=

det1 [ s, t [ p (xls+p − s+1
t − x−(ls+p − s+1)

t )
det1 [ s, t [ p (xp − s+1

t − x−(p − s+1)
t )

. (3.10)

Therefore, writing q for e2pi/(h+2) and H for N(h+1)/2M, the sum in the last
line of (3.9) equals

det
1 [ s, t [ p

(q st − q−st) C
1 [ eŒ1 < · · · < eŒp [ H

sp(eŒp − p,..., eŒ1 − 1)(q ± 1, q ± 2,..., q ± p)

= det
1 [ s, t [ p

(q st − q−st) C
n ı ((H − p)p)

spn(q ± 1, q ± 2,..., q ± p). (3.11)

Now we appeal to the formula (see ref. 23, Eq. (3.4)),

s(cr)(x1, x−1
1 ,..., xp, x−1

p , 1)= C
n ı (cr)

spn(x ± 1
1 ,..., x ± 1

p ). (3.12)

Use of this formula in (3.11) gives

det
1 [ s, t [ p

(q st − q−st) s((H − p)p)(q−p,..., q−1, 1, q,..., qp). (3.13)

Clearly, the determinant is easily evaluated by means of (3.4), whereas the
specialized Schur function can be evaluated by means of the hook-content
formula (see ref. 24, I, Sec. 3, Ex. 1 and ref. 22, Ex. A.30, (ii))

sl(q−L, q−L+1,..., q−L+P)=q;l \ 1 (l − L − 1) ll D
r ¥ l

1 − qP+cr

1 − qhr
, (3.14)
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where cr and hr are the content and the hook length of the cell r. Substitu-
tion of all this in (3.9) and some manipulation then leads to (3.8).

Now let m+ai be even. This implies that all the ei’s are even as well,
so that we have to compute the sum of (3.1) over all possible choices
of 0 [ e1 < e2 < · · · < ep [ h, with ei=2e −

i − 2 for some integer e −

i, i=
1, 2,..., p. Again, if we remember that expression (3.1) came from (3.3), we
see that this is

2p2

(h+2)p
12p D

p

s=1
cos

sp

h+2
2m

D
1 [ s < t [ p

sin
p(at − as)
2(h+2)

D
1 [ s [ t [ p

sin
p(at+as+2)

2(h+2)

× (−i)p C
1 [ eŒ1 < · · · < eŒp [ N(h+2)/2M

det
1 [ s, t [ p

(e
2pit
h+2 (eŒs − 1

2) − e− 2pit
h+2 (eŒs − 1

2)). (3.15)

This time, it is possible to rewrite the sum in the last line in terms of odd
orthogonal characters. The odd orthogonal characters sol(x ± 1

1 , x ± 1
2 ,...,

x ± 1
m , 1) where x ± 1

1 is a shorthand notation for x1, x−1
1 , etc., and l is an

m-tuple (l1, l2,..., lm) of integers, or of half-integers, are defined by

sol(x ± 1
1 , x ± 1

2 ,..., x ± 1
m , 1)=

det1 [ i, j [ m (xli+m − i+1/2
j − x−(li+m − i+1/2)

j )
det1 [ i, j [ m (xm − i+1/2

j − x−(m − i+1/2)
j )

.

(3.16)

While Schur functions are polynomials in x1, x2,..., xm, odd orthogonal
characters sol(x ± 1

1 , x ± 1
2 ,..., x ± 1

m , 1) are polynomials in x1, x−1
1 , x2, x−1

2 ,...,
xm, x−1

m , 1. They have combinatorial descriptions in terms of certain
tableaux as well, see ref. 25, Sec. 2, ref. 26, Sec. 6–8 and ref. 27,
Theorem 2.3.

Now, writing q for e2pi/(h+2) and H for N(h+2)/2M, the sum in the last
line of (3.15) equals

det
1 [ s, t [ p

(q (s − 1
2) t − q−(s − 1

2) t) C
1 [ eŒ1 < · · · < eŒp [ H

so(eŒp − p,..., eŒ1 − 1)(q ± 1, q ± 2,..., q ± p, 1)

= det
1 [ s, t [ p

(q (s − 1
2) t − q−(s − 1

2) t) C
n ı ((H − p)p)

son(q ± 1, q ± 2,..., q ± p, 1). (3.17)

Again there is a formula which allows us to evaluate the sum in the last line
(see ref. 23, Eq. (3.2)),

s((cr − a, (c − 1)a)(x1, x−1
1 ,..., xp, x−1

p , 1)= C
n ı (cr)

oddrows((cr)/n)=a

son(x ± 1
1 ,..., x ± 1

p , 1),

(3.18)
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where oddrows((c r)/n)=a means that the number of rows of odd length in
the skew shape (c r)/n equals exactly a. Use of this formula in (3.17) gives

det
1 [ s, t [ p

(q (s − 1
2) t − q−(s − 1

2) t) C
p

a=0
s((H − p)p − a, (H − p − 1)a)(q−p,..., q−1, 1, q,..., qp).

(3.19)

Again, the hook-content formula (3.14) applies and yields

det
1 [ s, t [ p

(q (s − 1
2) t − q−(s − 1

2) t) C
p

a=0
q−(H − p)(p+1

2 )+(a+1
2 ) <H − p − 1

s=1 (qp+s+1; q)p

<H − p
s=1 (q s; q)p

×
(qH+a+1; q)p − a (qa+1; q)p − a (qH − p; q)a

(q; q)p − a

for the expression (3.19). Here we used the standard notation for shifted
q-factorials, (a; q)k :=(1 − a)(1 − aq) · · · (1 − aqk − 1), k \ 1, (a; q)0 :=1. In
terms of the standard basic hypergeometric notation

rfs
5a1,..., ar

b1,..., bs
; q, z6= C

.

a=0

(a1; q)a · · · (ar; q)a

(q; q)a (b1; q)a · · · (bs; q)a

((−1)a q ( a

2)) s − r+1 za,

this can be written in the form

det
1 [ s, t [ p

(q (s − 1
2) t − q−(s − 1

2) t) q−(H − p)(p+1
2 ) 1 D

H − p

s=1

(qp+s+1; q)p

(q s; q)p

2

× 2f1
5qH − p, q−p

qH+1 ; q, −qp+16 .

The determinant is again easily evaluated by means of (3.4). On the other
hand, the 2f1-series in the above expression can be summed with the help
of the q-analogue of Kummer’s summation (see ref. 28, Appendix (II.9)),

2f1
5 a, b

aq/b
; q, −q/b6=

(−q; q). (aq; q2). (aq2/b2; q2).

(−q/b; q). (aq/b; q).

.

Thus we have finally evaluated the sum in (3.15). From there, it is then
routine to arrive at the expression (3.7). L

Clearly, if we specialize Theorem 6 to ai=a+2i − 2, i=1, 2,..., p, we
obtain the asymptotics for stars between two walls.
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Corollary 7. Let a be an integer with 0 [ a [ h − 2p+2. The number
of stars with p branches of length m, the ith branch starting from
Ai=(0, a+2i − 2), i=1, 2,..., p, which do not go below the x-axis nor
above the line y=h, is asymptotically

4p2

(h+2)p
12p D

p

s=1
cos

sp
h+2

2m

D
1 [ s < t [ p

sin2 p(t−s)
h+2

× D
1 [ s [ t [ p

sin
p(a+t+s−1)

h+2
· sin

p(t+s)
h+2

D
p

s=0
D

p

t=1

sin
p(t−s+N(h+2)/2M)

h+2

sin
p(t−s+p)

h+2

× D
p

s=1

sin
p(s+N(h+2)/2M−p)

h+2

sin
p(2s+N(h+2)/2M−p)

h+2

, (3.20)

if m+a is even, and

4p2

(h+2)p
12p D

p

s=1
cos

sp

h+2
2m

D
1 [ s < t [ p

sin2 p(t − s)
h+2

× D
1 [ s [ t [ p

sin
p(a+t+s − 1)

h+2
· sin

p(t+s)
h+2

D
p

s=0
D

p

t=1

sin
p(t − s+N(h+1)/2M)

h+2

sin
p(t − s+p)

h+2

,

(3.21)

if m+a is odd.

A different specialization yields the asymptotics for .-friendly stars
between two walls.

Corollary 8. Let a be an integer with 0 [ a [ h − 2p+2. The number
of .-friendly stars in the TK model with p branches of length m, the ith
branch starting from Ai=(0, a+2i − 2), i=1, 2,..., p, which do not go
below the x-axis nor above the line y=h, is asymptotically
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4p2

(h+2p)p
12p D

p

s=1
cos

sp

h+2p
2m

D
1 [ s < t [ p

sin
2p(t − s)

h+2p
· sin

p(t − s)
h+2p

× D
1 [ s [ t [ p

sin
p(a+2t+2s − 3)

h+2p

· sin
p(t+s)
h+2p

D
p

s=0
D

p

t=1

sin
p(t − s+N(h+2p)/2M)

h+2p

sin
p(t − s+p)

h+2p

× D
p

s=1

sin
p(s+N(h+2p)/2M− p)

h+2p

sin
p(2s+N(h+2p)/2M− p)

h+2p

, (3.22)

if m+a is even, and

4p2

(h+2p)p
12p D

p

s=1
cos

sp

h+2p
2m

D
1 [ s < t [ p

sin
2p(t − s)

h+2p
· sin

p(t − s)
h+2p

× D
1 [ s [ t [ p

sin
p(a+2t+2s − 3)

h+2p

· sin
p(t+s)
h+2p

D
p

s=0
D

p

t=1

sin
p(t − s+N(h+1)/2M)

h+2p

sin
p(t − s+p)

h+2p

, (3.23)

if m+a is odd.

Proof. As in the proof of Eq. (3.6), we shift the ith branch up by
2(i − 1) units. Thus we obtain a set of vicious walkers with p branches of
length m, the ith branch starting from Ai=(0, a+4i − 4), i=1, 2,..., p,
which do not go below the x-axis nor above the line y=h+2p − 2. Hence,
Theorem 6 with ai=a+4i − 4, i=1, 2,..., p, and h replaced by h+2p − 2
immediately gives the desired asymptotics. L

As we noted in the case of watermelons, the restriction to stars
confined between two walls, in contrast to stars without restriction and
with the restriction of one wall, the asymptotics of (ordinary) stars and
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.-friendly stars (compare the bases of the exponentials in Corollaries 7
and 8) is of a different order of magnitude (except in the case of single
branch stars, of course). Hence, again, from these considerations, it is
impossible to conclude whether n-friendly stars restricted by two walls will
have the same order of magnitude as (ordinary) stars, or not.

As a final remark we mention that we could also have stated an
asymptotic formula the number of all possible vicious walkers between two
walls (i.e., with arbitrary starting and end points). One would have to
sum up the expression in Theorem 6 over all 0 [ a1 < a2 < · · · < ap [ h,
which can be accomplished in the same way as the summation over
0 [ e1 < e2 < · · · < ep [ h of the expression (3.1) in the proof of Theorem 6.
We omit an explicit statement for the sake of brevity.
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